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Analytical formulas are derived to describe the nonstationary heat transfer taking place when 
a laminar flow of liquid passes around a flat plate, the surface temperature being an arbi- 
trary but specified function of time. 

The problem of nonstationary convective heat transfer is still a long way from the stage of develop- 
ment which has been achieved, for example, in the theory of nonstationary heat conduction [1]. Recently 
there have been a number of papers aimed at solving the equation of nonstationary heat transfer in the case 
of laminar and turbulent flows bounded by a cylindrical surface or parallel flat plates. There have also 
been papers concerned with heat transfer between a solid and a flow of liquid passing around it [2-6]. These 
papers have set the stage for a study of nonstationary heat transfer with forced convection. 

The aim of the present analysis is one of finding a description for heat transfer between a flat plate 
with a nonstationary surface temperature and a liquid flowing around it. A flow of incompressible liquid 
with constant thermophysical properties flows around a semiinfinite flat plate. The motion of the liquid 

is stationary (steady-state) and its temperature is constant. One of the three following cases may apply. 

The first case is that in which the surface temperature of the plate changes sharply, i.e., the sur- 

face temperature is initially equal to that of the flow of liquid Too, then at a certain instant the surface tem- 
perature changes instantaneously and is kept constant at a level of T w. Neglecting energy dissipation and 
changes in the thermophysieal properties of the incompressible liquid, the energy-transfer equation may 
be converted into the form 

&~t + u - - + v - - = a - -  (1) 
0"~ Ox Oy Og 2 

By a n a l o g y  wi th  [8], when  P r  = 1 we  m a y  r e w r i t e  Eq. (1) in the  fo l lowing  way 

88 Ot} Off 
- -  + ~ - - = a  - - ,  ( 2 )  
O~ Ox Oy 2 

w h e r e  

= l + v  u Ox 

We may replace the velocity component u in (2) by its limiting value U at the outer edge of the boundary 
layer. The error introduced by this approximation will subsequently be taken into the correction ~.; then 
(2) may be rewritten in the form 

a~ + ~ u  - - - = a - -  (3) 
& Ox Oy ~ 

Le t  us  i n t r o d u c e  the  t h e r m a l  b o u n d a r y  l a y e r  5(x, ~-), the  t h i c k n e s s  of which  has  to be  d e t e r m i n e d ,  
fo r  which  p u r p o s e  we i n t e g r a t e  Eq. (3) f r o m  y - 0 to  y = 6. In i n t e g r a t e d  f o r m  Eq. (3) m a y  be w r i t t e n  thus:  
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Fig.  1. Heat  flow as a function of t ime: 1) accord ing  to [2]; 2) by Eq. ( l l a ) ;  3) a c c o r -  
ding to [3]. 

Fig.  2. Trans i t ion  t ime e a  as a function of the Prandt l  numbe r  P r :  1) according to [2]; 
2) f rom Eq.  (15); 3 , 3 ' )  accord ing  to [7]; 4) according  to [4]. 

6 6 
_00 (4) 

\ Og 1~=o 

In o rder  to c a r r y  out the integrat ion,  we mus t  make  an assumpt ion  regard ing  the profi le  of the t e m p e r a t u r e  
dis tr ibut ion in the boundary layer .  To a r easonab le  approximat ion  we may  take a cubic t e m p e r a t u r e  profi le  

-~-~@to ~ 1 - -  1"5(~- )  q -0 '5 ( - -~ )  3" (5) 

Substituting (5) into (4) and simplifying,  we obtain 

5 0_~_6 -beU~ --05 = 4 a .  
O~ Ox 

In the ca se  of an i so the rma l  s ta te  of the f iat  plate, the boundary and initial  conditions take the f o r m  

a(0, ~)=0; a(x,O)=O. 

Equation (6) may be solved in par t ia l  de r iva t ives  ei ther  by the method of c h a r a c t e r i s t i c s  (as in [6]) or by 
the s imi l a r i t y  method (as in [3] and [4]), or  e l se  by a Lap lace  t r ans format ion .  

The solution takes  the f o r m  

X 

5:= I "8ax/eU ; T >  x 
eU 

The flow of heat on the su r f ace  of the plate may  be found f r o m  the Fou r i e r  law 

a{} 

Using this re la t ionship  and Eq. (5) we obtain 

Combining this  r e su l t  with Eq. (8), 

3 Z ~  
2 

we obtain an express ion  for  the heat flow on the su r face  of the plate 

(6) 

(7) 

(8a) 

(8b) 

(9) 

(lo) 

qx -- NG := 0.531 Pr ~/2 Re~"~o -1/2 ; ~ .< 1 (11a) 

qx Nu~ = 0.531 e I/~ Pr 1/2 Re~/~ �9 a > / 1  (11b) 
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where 

= xU/x. 

For short time intervals, the equation for determining the heat flow (llb) agrees closely with the 
solution of the one-dimensional problem of heat propagation by conduction in a semiinfinite space occupied 

by a liquid [I], which (in our own notation) is: 

clx _ 1 Pr '/2 Relx/2c~ -I/2. (12) 

This resul t  is not unexpected, since in the case of very  short  t ime intervals  the tempera ture  gradient is 
only nonzero in the immediate  neighborhood of the surface  of the plate, at which the velocity components 
u and v a re  ext remely  small,  and hence convective effects may be neglected. For  short  t ime intervals ,  
also, the heat-flow equation agTees closely with the resul ts  of [2, 3]. 

In Fig. 1 Eq. (11a) is compared with the resul ts  of [2] and [3] for the Prandtl  number Pr  = 0.72. 

We see f rom Fig. 1 that for short  t ime intervals  all the equations agree  quite closely with each other. 

In calculating the correction e we make use of the solution of the stationary problem with which Eq. 
(llb) should coincide for heat flow over long periods of time. The local dimensionless stationary heat flow 
for a flat plate may be found from the exact solution of Sehlichting [9] 

Nu~ = 0.332 Pr'/~Re~ -l/~. (13) 

Equating (llb) to (13), we obtain an equation for determini_ng the correction 

s : 0.391 Pr -~/8 . (14) 

The equations for the heat flow (11a) and (lib) show that, in the case of a sharp change in t empera -  
ture on the surface  of the plate, the heat flow may be described by the solution to the problem of one- 
dimensional heat conduction, up to a cer ta in  instant of t ime given by 

1 (15)  % = - -  =2 .56Pr  ~y3, 
8 

after  which the solution corresponding to s ta t ionary heat t r ans fe r  may be used for the heat flow. 

We see f rom Eq. (15) that, the g rea te r  the Prandtl  number,  the longer is the t ime required to reach 
the steady state. 

Equation (15) for the s teady-s ta te  t ransi t ion t ime agrees  reasonably well with the analogous ex- 
press ions  obtained in [2, 6]. The express ion for the t ransi t ion t ime obtained in [3] differs f rom (15) in r e -  
spect to the numerical  factor ,  which is roughly half that given in the latter.  The reason  for this difference 
is that a l inear veloci ty-dis t r ibut ion profile was used in [3], leading to a physically impossible  result .  The 
same resul t  was obtained in [4] using a l inear velocity profile. 

For  comparison,  Fig. 2 shows the t ransi t ion t imes given by Eq. (15) and those calculated f rom the 
equations of [2, 3, 6]. 

The second case is a general izat ion of the f i r s t  case, in which the surface t empera tu re  of the plate is 
an a r b i t r a r y  function of time. in other words,  the plate and the liquid a r e  initially at a t empera ture  T~ 
and then the surface t empera tu re  var ies  a rb i t r a r i l y  with t ime in the manner  Tw(~). 

The resul t s  obtained for the case in which the surface tempera ture  changes abruptly may be genera l -  
ized to the case in which the surface  t empera tu re  is an a rb i t r a ry  function of t ime 0 w = $w(~) for ~ > 0, 
if 0w0- ) and the derivat ive $ '(~-) a re  f ragmentedly  continuous for "r > 0 (Duhamel theorem). 

According to the Duhamel theorem,  on applying Eq. (11) and considering ~ w(0) = 0, the heat flow on 
the surface  of the plate is given by the following relation: 

qx 1/3 I / 2  'r~ (tl--l/2 =0.332Pr Rex j 9~.(~--t)\~-f, ! dt; 
0 

-4 %; (16a) 
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Fig.  3. Dependence of the heat  flow on the 
sur face  t e m p e r a t u r e  when the l a t t e r  obeys 
the law ~w = and'n: 1) n = 0; 2) 1; 3) 2; 4) 
3; 5) 5; 6) 7; 7) 10. 

= - -  ( ~  1) k+i 
qqu \Oa / w ~ k=1 

,- f f a  

_ \% ] 
0 

dt'q-~(,~--,~o) 1 ; ,J > ~ .  

(16b) 

In general ,  if  the su r face  t e m p e r a t u r e  of the plate is a poly-  
nomial  of the n-th degree in the time, i.e., 

n 

then the d imens ion less  heat flow m a y  be wri t ten in the fo l -  
lowing way: 

2k ] (17a) 
(2k-- l).k! 

n 

qqu q = 1 +  ~ 1  [ ~ (__ 1)~+ 1 i2k--1) " k ! l  o~tv~k"(k)]j ; ~ >~a~, (17b) 

where  qqu is the quas i s t a t iona ry  heat flow de te rmined  by Eq. ( l lb) ;  ~ k  w is the k- th  de r iva t ive  of 4 w with 
r e s p e c t  to or. 

F igure  3 r e p r e s e n t s  Eqs. (17a) and (17b) for  the Prandt l  number  P r  = 0.72 in the case  in which the 
su r face  t e m p e r a t u r e  has the fo rm:  

~tV = a a  (Jtz~ 

where  n = 0, 1, 2, 3, 5, 7, and 10 (n = 0 is used in (11)). 

We see  f r o m  Fig. 3 that, the g r e a t e r  the degree  n, i .e. ,  the m o r e  sharp ly  the su r f ace  t e m p e r a t u r e  
v a r i e s  with t ime,  the s t ronge r  is the heat flow. 

The third and last  case  which we shall  consider  here  is that in which for  z < 0 there  is  a s ta te  of 
s t a t ionary  heat t r ans fe r ,  i .e. ,  d w = Tw - Too = const  ~ 0 for  z < 0, and then at  T = 0 the su r face  t e m -  
p e r a t u r e s  s t a r t s  vary ing  a r b i t r a r i l y  with t ime,  i .e. ,  3 w = dw(T) for  ~- > 0. 

Le t  us suppose that, when the su r f ace  t e m p e r a t u r e  of the plates  changes,  the th ickness  of the t h e r m a l  
l ayer  r e m a i n s  constant,  i .e. ,  6(x, T) = 5(x), and only the t e m p e r a t u r e  field in the t h e r m a l  boundary l aye r  
var ies ,  i .e . ,  3 =O(x, y, T ) fo r  z > 0. 

Let  the t e m p e r a t u r e  profi le  be descr ibed  by the equation of a cubic parabola  

The boundary conditions are:  

= a0 (x, r + ai (x, r y + a2 (x, r y2 + a3 (x, r y". (is) 

~(x, 6, ~) = 0; (19) 

0~ 
- -  (x, 6, ~) = 0; (20) 
0y 

~(x, 0, ~) -~ Ow (z); (21) 

0%% (x, 0,~)--  1 a~ (x, 0 ,~)~-~l  ~_~(~). (22) 
Oy ~ a O~ a 

The las t  condition (22) is obtained f r o m  Eq. (1) on substi tuting u = v = 0 into the la t te r .  Using conditions 
(19)-(22) we obtain the following t e m p e r a t u r e  profile: 

3 1 8 2 1 y 1 { y I ~  
(23) 
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The heat flow is determined by the Fourier law (9). Using Eq. (23) we find 

3 s 1 yS@~,(~) (24) 
q- -  2 6 @ 4 a 

T If d w = 0, i .e. ,  d w = const,  then q is given by Eq. (10). Hence Eq. (24) m a y  be r ewr i t t en  as: 

(2.5) q - - 1 §  
qqu 6a 9w (T) 

The th ickness  of the boundary l ayer  5(x) for  s ta t ionary  heat t r a n s f e r  is given by gq. (8b); then on using 
Eq. (14) Eq. (25) takes  the f o r m  

( ) { f ~ ( ~ ) u  ~ ( ~ )  (26a) q -- 1-?3.41Pr '/a " x  
qqu 

or with the aid of (15) 

~ q  - 1-~- 1.33% 0~(~) (26b) %- 

We see f r o m  Eq. (26) that, if Idw[ i n c r e a s e s  with t ime,  i .e. ,  Sw and dw' have the s a m e  sign, then 
the second t e r m  on the r ight -hand side of (26) will a lways be posit ive,  and hence the ra t io  of the heat flow 
q / q q u  will be  g r e a t e r  than unity. 

T 
Too 
Tw 
d = T -- Too; 
d w =T w - To ;  
T 

X 

Y 
u 

v 
U 
a 

5 
= 52; 

q 

P r  = /;/c~ 
Nux = a x / X  
Rex = U x / ,  
cr = U r / x ;  
(r a 

qqu 
s 

t 

NOTATION 

is the t e m p e r a t u r e  of the liquid in the t h e r m a l  boundary layer ;  
is the t e m p e r a t u r e  of the flow of liquid at  infinity; 
is the su r face  t e m p e r a t u r e  of the plate; 

is the t ime;  
is the l inear  coordinate  reckoned along the plate f rom the leading edge; 
~s the l inear  coordinate  reckoned along the normal  to the plate; 
is the ve loc i ty  component  along the x axis ;  
is the veloci ty  component  along the y axis;  
is the veloci ty  of the flow of liquid; 
xs the t h e r m a l  diffusivity; 
is the k inemat ic  v iscos i ty ;  
is the th ickness  of t h e r m a l  boundary layer ;  

is the t h e r m a l  flux density;  
is the t he rm a l  conductivity; 
is the h e a t - t r a n s f e r  coefficient;  
is the Prandt l  number ;  
is the local  Nussel t  number ;  
is the local  Reynolds number ;  

is the t rans i t ion  t ime given by Eq. (15); 
is the quas i s t a t ionary  (s teady-s ta te)  t h e r m a l  flux density; 
is the va r i ab l e  in Laplace  t r ans fo rma t ions ;  
is  the in tegra t ion  var iab le .  

I. 

2. 
3. 
4. 
5. 
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