HEAT TRANSFER BETWEEN A FLAT PLATE WITH A
NONSTATIONARY SURFACE TEMPERATURE AND A
LAMINAR FLOW OF LIQUID AROUND IT

G. I. Pavlovskii and M. M. A, Avad UDC 536.242

Analytical formulas are derived to describe the nonstationary heat transfer taking place when
a laminar flow of liquid passes around a flat plate, the surface temperature being an arbi-
trary but specified function of time.

The problem of nonstationary convective heat transfer is still a long way from the stage of develop-
ment which has been achieved, for example, in the theory of nonstationary heat conduction {1]. Recently
there have been a number of papers aimed at solving the equation of nonstationary heat transfer in the case
of laminar and turbulent flows bounded by a cylindrical surface or parallel flat plates. There have also
been papers concerned with heat transfer between a solid and a flow of liquid passing around it [2-6]. These
papers have set the stage for a study of nonstationary heat transfer with forced convection.

The aim of the present analysis is one of finding a description for heat transfer between a flat plate
with a nonstationary surface temperature and a liquid flowing around it. A flow of incompressible liquid
with constant thermophysical properties flows around a semiinfinite flat plate. The motion of the liquid
is stationary (steady-state) and its temperature is constant. One of the three following cases may apply.

The first case is that in which the surface temperature of the plate changes sharply, i.e., the sur-
face temperature is initially equal to that of the flow of liquid T, then at a certain instant the surface tem-
perature changes instantaneously and is kept constant at a level of Ty,. Neglecting energy dissipation and
changes in the thermophysical propei‘ties of the incompressible liquid, the energy-transfer equation may
be converted into the form
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By analogy with [8], when Pr = 1 we may rewrite Eq. (1) in the following way
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where

We may replace the velocity component u in (2) by its limiting value U at the outer edge of the boundary
layer. The error introduced by this approximation will subsequently be taken into the correction €; then
(2) may be rewritten in the form
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Let us introduce the thermal boundary layer (%, 7), the thickness of which has to be determined,
for which purpose we integrate Eq. (3) from y =0 toy = 6. In integrated form Eq. (3) may be written thus:
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Fig. 1. Heat flow as a function of time: 1) according to [2]; 2) by Eq. (11a); 3) accor~
ding to [3].

Tig. 2. Transition time o, as a function of the Prandtl number Pr: 1) according to [2];
2) from Eq. (15); 3,3") according to [7]; 4) according to [4].
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In order to carry out the integration, we must make an assumption regarding the profile of the temperature
distribution in the boundary layer. To a reasonable approximation we may take a cubic temperature profile
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Substituting (5) into (4) and simplifying, we obtain
5 B Levs B 4 (6)
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In the case of an isothermal state of the flat plate, the boundary and initial conditions take the form
8(0, ©)=0; 8(x, 0)=0. (7

Equation (6) may be solved in partial derivatives either by the method of characteristics (as in [6]) or by
the similarity method (as in [3] and [4]), or else by a Laplace transformation.

The solution takes the form
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The flow of heat on the surface of the plate may be found from the Fourier law
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Using this relationship and Eq. (5) we obtain
g=3 M (10)
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Combining this result with Eg. (8), we obtain an expression for the heat flow on the surface of the plate
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where

o=1xlU/x.

For short time intervals, the equation for determining the heat flow (11b) agrees closely with the
solution of the one-dimensional problem of heat propagation by conduction in a semiinfinite space cccupied
by a liquid {1], which (in our own notation} is:
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This result is not unexpected, since in the case of very short time intervals the temperature gradient is
only nonzero in the immediate neighborhood of the surface of the plate, at which the velocity components
uand v are extremely small, and hence convective effects may be neglected. For short time intervals,
also, the heat-flow equation agrees closely with the results of [2, 3].

In Fig. 1 Fq. (11a) is compared with the results of [2] and [3] for the Prandtl number Pr = 0.72.
We see from Fig. 1 that for short time intervals all the equations agree quite closely with each other.

In caleulating the correction € we make use of the solution of the stationary problem with which Eg.
{(11b) should coincide for heat flow over long periods of time. The local dimensionless stationary heat flow
for a flat plate may be found from the exact solution of Schlichting [9]

Nu, = 0.332 Pr'Re; . (13)
Equating (11b) to (13}, we obtain an equation for determining the correction

¢ — 0.391 Pr-Us . (14

The equations for the heat flow (11a) and (11b) show that, in the case of a sharp change in tempera~
ture on the surface of the plate, the heat flow may be described by the solution to the problem of one-
dimensional heat conduction, up to a certain instant of time given by

6, = - = 956PHA (15)
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after which the solution corresponding to stationary heat transfer may be used for the heat flow.

We see from Eq. (15) that, the greater the Prandtl number, the longer is the time required to reach
the steady state.

Equation (15) for the steady-state transition fime agrees reasonably well with the analogous ex-
pressions obtained in [2, 8]. The expression for the transition time obtained in [3] differs from (15) in re-
spect to the numerical factor, which is roughly half that given in the latter. The reason for this difference
is that a linear velocity-distribution profile was used in [3], leading to a physically impossible result., The
same result was obtained in [4] using a linear velocity profile.

For comparison, Fig. 2 shows the transition times given by Eq. (15) and those calculated from the
equations of [2, 3, 6].

The second case is a generalization of the first case, in which the surface temperature of the plate is
an arbitrary function of time. In other words, the plate and the liquid are initially at a temperature T
and then the surface temperature varies arbitrarily with time in the manner Ty(7).

The results obtained for the case in which the surface temperature changes abruptly may be general-
ized to the case in which the surface temperature is an arbitrary function of time ¥ = (1) for 7 > 0,
if ¥ (7) and the derivative 4 '(1) are fragmentedly continuous for 7 > 0 (Duhamel theorem).

According to the Duhamel theorem, on applying Eq. (11) and cdnsidering dw(0) =0, the heat flow on
the surface of the plate is given by the following relation:
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Fig. 3. Dependence of the heat flow on the

surface temperature when the latter obeys O, = Eakck,
the law J, = a,™: 1) n = 0; 2) 1; 3) 2; 4)
3; 5) 5; 6) 7; 7) 10. then the dimensionless heat flow mafy be written in the fol-
lowing way:
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where dgu is the quasistationary heat flow determined by Eq. (11b); 191‘}, is the k-th derivative of 4 with
respect to o.

Figure 3 represents Egs. (17a) and (17b) for the Prandtl number Pr = 0.72 in the case in which the
surface temperature has the form:

6[0 = ano-”,
wheren=0,1, 2,3, 5,7, and 10 (n = 0 is used in (11)).

We see from Fig. 3 that, the greater the degree n, i.e., the more sharply the surface temperature
varies with time, the stronger is the heat flow.

The third and last case which we shall consider here is that in which for 7 < 0 there is a state of
stationary heat transfer, i.e., ¢y = Tw — T, = const = 0 for 7 < 0, and then at 7 = 0 the surface tem-
peratures starts varying arbitrarily with time, i.e., d =3 (1) for 7> 0.

Let us suppose that, when the surface temperature of the plates changes, the thickness of the thermal
layer remains constant, i.e., 6(x, 7) = 6(x), and only the temperature field in the thermal boundary layer
varies, i.e., ¢ =4, y, 7) for 7 > 0.

Let the temperature profile be described by the equation of a cubic parabola

G =qa,(x, 1)+ a; (x, Yy + a (x, 1) y* + a5 (x, ) . (18)
The boundary conditions are:
B(x, 8, 1) =0; (19)
O 5, 1) = 0; (20)
oy
d(x, 0, 1) =, () (21)
: 1

P 0,9 = -2 (6,0, 9 = - 8, (1) (22)

oy a

The last condition (22) is obtained from Eq (1) on substituting u = v = 0 into the latter. Using conditions
(19)-(22) we obtain the following temperature profile:

o3 (2] 42 [+ o [ ]

(=]

1134



The heat flow is determined by the Fourier law (9). Using Eg. (23) we find

3 b, (1 yebu(r) (24)
I=9 & T4 4 -

If é‘",v =0, i.e., 4w = const, then q is given by Eq. (10). Hence Eq. (24) may be rewritten as:

g L8 By (1) 25
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The thickness of the boundary layer §(x) for stationary heat transfer is given by Eq. (8b); then on using
Eq. (14) Eq. (25) takes the form
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We see from Eq. (26) that, if |d | increases with time, i.e., ¥y and & § have the same sign, then
the second term on the right-hand side of (26) will always be positive, and hence the ratio of the heat flow
a/ dqu will be greater than unity.

NOTATION

T is the temperature of the liquid in the thermal boundary layer;
T is the temperature of the flow of liquid at infinity;
Tw is the surface temperature of the plate;
4 =T — T
Yw =Ty — Toos
T is the time;
x is the linear coordinate reckoned along theplate from the leading edge;
y is the linear coordinate reckoned along the normal to the plate;
u is the velocity component along the x axis;
v is the velocity component along the y axis;
U is the velocity of the flow of liquid;
a is the thermal diffusivity;
v is the kinematic viscosity;
6 is the thickness of thermal boundary layer;
@ = 6%
q is the thermal flux density;
A is the thermal conductivity;
o is the heat-transfer coefficient;
Pr=v/o is the Prandtl number;
Nuy = ax/A is the local Nusselt number;
Rex = Uy/v is the local Reynolds number;
o=Ur/%;
Oy is the transition time given by Eq. (15);
dqu is the quasistationary (steady-state) thermal flux density;

is the variable in Laplace transformations;
t is the integration variable.
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